Multi-modal approach for investigating brain and behavior changes in an animal model of traumatic brain injury.
نویسندگان
چکیده
Use of novel approaches in imaging modalities is needed for enhancing diagnostic and therapeutic outcomes of persons with a traumatic brain injury (TBI). This study explored the feasibility of using functional magnetic resonance imaging (fMRI) in conjunction with behavioral measures to target dynamic changes in specific neural circuitries in an animal model of TBI. Wistar rats were randomly assigned to one of two groups (traumatic brain injury/sham operation). TBI rats were subjected to the closed head injury (CHI) model. Any observable motor deficits and cognitive deficits associated with the injury were measured using beam walk and Morris water maze tests, respectively. fMRI was performed to assess the underlying post-traumatic cerebral anatomy and function in acute (24 hours after the injury) and chronic (7 and 21 days after the injury) phases. Beam walk test results detected no significant differences in motor deficits between groups. The Morris water maze test indicated that cognitive deficits persisted for the first week after injury and, to a large extent, resolved thereafter. Resting state functional connectivity (rsFC) analysis detected initially diminished connectivity between cortical areas involved in cognition for the TBI group; however, the connectivity patterns normalized at 1 week and remained so at the 3 weeks post-injury time point. Taken together, we have demonstrated an objective in vivo marker for mapping functional brain changes correlated with injury-associated cognitive behavior deficits and offer an animal model for testing potential therapeutic interventions options.
منابع مشابه
P143: The Neuroprotective Effect of Chloroquine in Animal Model of Traumatic Brain Injury
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality in young adults and children, and is a leading public health problem worldwide. In TBI, neurological impairment is caused by immediate brain tissue disruption (primary injury) and post‑injury cellular and molecular events (secondary injury) that exacerbate the primary neurological insult. However, the destructi...
متن کاملP 41: Meningioma Stem Like Cells and Self Assembling Nanopeptide Scaffold for Treatment of Traumatic Brain Injury in Animal Model
Introduction: Brain injury is an important cause of morbidity and mortality worldwide and so far, there has been no absolute treatment for the damaged brain tissue. Using human stem cells with self-assembling scaffolds can be a promising method for treatment of traumatic brain injury. Materials and Methods: Human meningioma stem cells were isolated, cultured and then expanded into in vitro cond...
متن کاملA Six-step Approach to Gain Higher Quality Results From Organotypic Hippocampal Brain Slices in a Traumatic Brain Injury Model
Background: Organotypic Hippocampal Brain Slices (OHBS) provide a better alternative to in vivo models to scrutinize Traumatic Brain Injury (TBI). We followed a well-established TBI protocol but noticed that several factors might influence the results in such a set-up. Here, we describe a structured approach to generate more comparable results and discuss why specific eligibility criteria shoul...
متن کاملECG changes of cardiac origin in elderly patients with traumatic brain injury
Background: Simultaneous electrocardiographic (ECG) changes are seen in hemorrhagic brain events even in the absence of associated myocardial infarction (MI). This study was designed to assess the role of ECG changes to predict true MI in patients with hemorrhagic brain trauma. Methods: Data of 153 patients with traumatic brain injury and concomitant ECG changes were recorded. Enzyme study w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurotrauma
دوره 30 11 شماره
صفحات -
تاریخ انتشار 2013